Multi-core Performance Analysis

HPC Computation



Performance Analysis

 Compiler Feedback
 HWPC Data
 Load Balance



Compiler Feedback

e Before optimizing code, it’s critical to know what the
compiler does to your code

— Loop optimizations
— Vectorization
— Prefetching

* Equally important to what the compiler does is what it
doesn’t do, and why

— Data dependencies
— Misplaced branches
— Unknown loop counts



Enabling Compiler Feedback

Portland Group

— Minfo=all

— Mneginfo

— Minfo=ccff (Common Compiler Feedback Format)
Cray

— rm (Fortran)

— hlist=m(C/C++)

Intel

— vec-reportl

Pathscale

— LNO:simd verbose=ON:vintr verbose=ON:prefetch v
erbose=0N

GNU

— ftree-vectorizer-verbose=1



Compiler Feedback Examples: PGI

! Matrix Multiply mm :
do k =1, N 18, Loop interchange
do j =1, N produces reordered loop

nest: 19,18,20

20, Generated 3
alternate loops for the

doi=1, N
c(i1,j) =c(i,]) + &
a(i,k)*b(k,j)

loop
end do Generated vector
end do sse code for the loop
end do Generated 2

prefetch instructions
for the loop



PGl CCFF Usage

ftn -fast -Minfo=all,ccff -Mneginfo -Mprof=ccff
mm.EF90

pgcollect ./a.out
pgprof ./a.out



CCFF in PGProf

== Xming X [==]=]

File Settings Processes Miew Sort Search Healp
Baidd{- [Find: ’?] & ¢ [HutSput: Ssconds |i] @ ey
Line mim. Fag Secands
14 real {83, intent{inout) :: C{N,N} E
15 integer :: i,J,k
1A
17 L Matrix Multiply 1
ae 18 do k=1, N
a@e 19 do 3 =1, N
ee 20 4o i=1, N
21 (i, 3y = cfi,3) + &
22 afi, k) " bk, 37 _
23 end do =
24 end do
()] 25 end do
26 end subroutine mm
27
28 [end module mm_mod |
29 Bl
Sort By Line
o D U O U
L. Intensity = (n™(n"(n"2 ) ((n"n)+n"n)+0n"n)+in"n )
2. Loop interchange produces reordered loop nest: 15,15,20
piled
Parallelism l Histogram W System Configuration l Accelerator Performance J

Profiled: ./a.out on Wed Sep 21 09:49:04 EDT 2011 | Profile: ./ pgprof.out




CCFF in PGProf (cont.)

= Xming X [==]=]

File Settings Processes Miew Sort Search Halp
r= = R [Find: ’?J & [HDtSput: Seconds FJ @ g ¥
Line mim. Fao Seconds
14 real {83, intent(inoutl =: CONLND E
15 integer :: 1,7,k
16
17 LoMatrix Multiply 1
(D3] 18 do k=1, N
@0 19 do =1, N
(D]®)] 20 doi=1, N
21 Cii,jy =cfi,j) + &
22 ali, k) ¥ bk, 32 -
23 end do -
24 end do
()] 25 end da
26 end subroutine mm
27
28 [end module mm_mod | |
29 hd
Sort By Line
O
1. Intensity = 0,67
2. Generated 3 alternate loops for the loop
3. Generated vector sse code for the loop
4, Generated 2 prefetch instructions for the loop
ation about how file mm.F90 was compiled

|| Parallelism J_ Histogram ompiler Feedbac System Configuration 1 Accelerator Performance J

| Profiled: ./a.out on Wed Sep 21 09:49:04 EDT 2011 | Profile: ./ pgprof.out




Compiler Feedback Examples: Cray

18. ib-——————————- < dok =1, N . .

19. ib ibrd------- < do j =1, N i - interchanged
20. ib ibrd Vbrd--< doi=1, N b - blocked

21. ib ibr4 vbr4 c(i,j) = c(i,j) + &

22. ib ibrd Vbr4 a(i, k) * b(k,3j) r — unrolled

23. ib ibr4 Vbr4d--> end do =

24. ib ibr4------- > end do v VeCtorlzed
25. ib--———---—---- > end do

ftn-6007 ftn: SCALAR File = mm.F90, Line = 18
A loop starting at line 18 was interchanged with the loop starting at line 19.
ftn-6254 ftn: VECTOR File = mm.F90, Line = 18

A loop starting at line 18 was not vectorized because a recurrence was found on "C" at line
21.

ftn-6049 ftn: SCALAR File = mm.F90, Line = 18
A loop starting at line 18 was blocked with block size 32.
ftn-6294 ftn: VECTOR File = mm.F90, Line = 19

A loop starting at line 19 was not vectorized because a better candidate was found at line
20.

ftn-6049 ftn: SCALAR File = mm.F90, Line = 19

A loop starting at line 19 was blocked with block size 8.
ftn-6005 ftn: SCALAR File = mm.F90, Line = 19

A loop starting at line 19 was unrolled 4 times.
ftn-6049 ftn: SCALAR File = mm.F90, Line = 20

A loop starting at line 20 was blocked with block size 256.
ftn-6005 ftn: SCALAR File = mm.F90, Line = 20

A loop starting at line 20 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = mm.F90, Line = 20

A loop starting at line 20 was vectorized.



Compiler Feedback Examples:
Pathscale

(mm.F90:20) Vectorization is not likely to be beneficial (try
LNO:simd=2 to vectorize it). Loop was not vectorized.

(mm.F90:20) Vectorization is not likely to be beneficial (try
LNO:simd=2 to vectorize it). Loop was not vectorized.

(mm.F90:20) Vectorization is not likely to be beneficial (try
LNO:simd=2 to vectorize it). Loop was not vectorized.

(mm.F90:20) Vectorization is not likely to be beneficial (try
LNO:simd=2 to vectorize it). Loop was not vectorized.

(mm.F90:19) Generated 40 prefetch instructions for this loop
=== After adding -LNO:simd=2 ===

(mm.F90:20) Loop has too many loop invariants. Loop was not
vectorized.

(mm.F90:20) LOOP WAS VECTORIZED.
(mm.F90:20) LOOP WAS VECTORIZED.
(mm.F90:20) LOOP WAS VECTORIZED.
(mm.F90:19) Generated 52 prefetch instructions for this loop



Compiler Feedback Examples: Intel

mm.F90 (20): (col. 9) remark: LOOP WAS VECTORIZED.
mm.F90 (20): (col. 9) remark: LOOP WAS VECTORIZED.
mm.F90(20): (col. 9) remark: LOOP WAS VECTORIZED.



Compiler Feedback Examples: GNU

mm.F90:20: note: LOOP VECTORIZED.

mm.F90:11: note: vectorized 1 loops in function.



Gathering Runtime Performance Data

* Performance data can be gathered in numerous ways with
a range of detail and intrusiveness

— Sampling - Snapshot of data collected periodically - very light
weight

— User timers - User inserts timers at logical places - slightly
heavier, very intrusive to code

— Code instrumentation - Tool inserts instrumentation
automatically into the code

* Degrees of detail
— Sampling - high level overview, low details
— Profiling - summation over time, more detailed
— Tracing - record of events over time, very detailed and expensive



CrayPAT Automatic Performance
Analysis (APA)

* CrayPAT provides a mechanism for guiding user
experiments, known as APA

e User first makes lightweight, sample-based run

e Data from initial run is used to suggest
appropriate parts of code for gathering more
detailed information
— Attempts to exclude routines that would add

overhead and focus on routines that are likely to be
important



Important Runtime Data

Time spent in important routines, libraries,
and loop nests

Hardware Performance Counters (HWPC)
Load imbalance data

Communication
— Time
— Routines

— Message sizes
|/O Data



Sampling Output (Table 1)

Notes for table 1:

Table 1: Profile by Function

Samp % Samp Imb. Imb. |Group .
Samp Samp % Function
PE='HIDE'
100.0% | 775 | -- | -- |Total
94.2% | 1730 | -- | -- |USER
43.4% 336 8.75 2.6% |mlwxyz
16.1% 125 6.28 4.9% |half™ —
8.0% 62 6.25 9.5% |full—
6.8% 53 1.88 3.5% |artv—
4.9% 38 1.34 3.6% |bnd —
3.6% 28 2.00 6.9% |currenf
2.2% 17 1.50 8.6% |bndsf —
1.7% 13 1.97 13.5% |model—
1.4% 11 1.53 12.2% |cfl —
1.3% 10 0.75 7.0% |cur¥enh
1.0% 8 5.28 41.9% |bndbo —
1.0% 8 8.28 53.4% |bndto—
5.4% | 42 | -— | -- |MPI
1.9% 15 4.62 23.9% |mpi sendrecv
1.8% 14 16.53 55.0% |mpi~bcast -
1.7% 13 5.66 30.7% |mpi~barri®r




Sampling Output (Table 2)

Table 2: Profile by Group, Function, and Line

Samp % | Samp | Imb. | Imb. |Group
| | Samp | Samp % | Function
| | | | Source
| | | I Line
I I | | PE='HIDE'
100.0% | 777 | -— | -- |Total
l _____________________________________________
| 94.2% | 732 | - -- |USER
l ____________________________________________
| 43.4% | 337 | -— -- |mlwxyz
3 | | 1ldr/mhd3d/src/mlwxyz.f
l __________________________________________
4 2.1% | 16 | 1.47 | 8.9% |line.39
4 2.8% | 22 | 2.25 | 9.7% |line.78
a|| 1.3%3 | 10 | 1.72 | 14.8% |line.604
? 2.4% | 19 | 0.72 | 3.7% |line.634
I
| 16.1% | 125 | -— | -- |half
? | | | 1dr7mhd3d/src/half. £
4 5.4% | 42 | 6.41 | 13.8% |line.28
4 10.7% | 83 | 5.91 | 6.9% |line.40
|
| 8.0% | 62 | -— | -— | full
? | | | | 1dr7mhd3d/src/full.f
? 8.0% | 62 | 6.31 | 9.6% |line.22
.I.
5.4% | 42 | -— | -- |MPI
r 1.9% | 15 | 4.62 | 23.9% |mpi_sendrecv_
[
1.8% | 14 | 16.53 | 55.0% |mpi bcast
1.7% | 13 | 5.66 | 30.7% |mpi_barrier_




CrayPAT Tracegroup (subset)

adios
armci
blas
caf
chapel
hdf5
heap
io
lapack
math
mpi
omp
shmem
upc

Adaptable I/O System API
Aggregate Remote Memory Copy
Basic Linear Algebra subprograms
Co-Array Fortran (Cray CCE compiler only)
Chapel language compile and runtime library API
manages extremely large and complex data collections
dynamic heap
includes stdio and sysio groups
Linear Algebra Package

POSIX.1 math functions
MPI
OpenMP APl and runtime library APl (CCE and PGl only)
SHMEM
Unified Parallel C (Cray CCE compiler only)

For a full list, please see man pat_build



pat report: Flat Profile

Table 1: Profile by Function Group and Function
Time % | Time |Imb. Time | Imb. | Calls |Group
| | | Time % | | Function
I I I I | PE='HIDE'
100.0% | 104.593634 | -— | -- | 22649 |Total
| ____________________________________________________________
| 71.0% | 74.230520 | -— -- | 10473 |MPI
| | === = e e e e e e e e
|| 69.7% | 72.905208 | 0.508369 | 0.7% | 125 |mpi_allreduce_
I 1.0% | 1.050931 | 0.030042 | 2.8% | 94 |mpi_alltoall
Il
| 25.3% | 26.514029 | - -— | 73 |USER
| | === o m o mm mmm m  e
|l 16.7% | 17.461110 | 0.329532 | 1.9% | 23 |selfgravity
N 7.7% | 8.078474 | 0.114913 | 1.4% | 48 |ffted_
| | ==========s=sssssssssss TS S ST S SS TS S ST S S ST S S ST S S STS S ST Sss
| 2.5% | 2.659429 | - -— | 435 |MPI_SYNC
| | === = e e e e e e
| 2.1% | 2.207467 | 0.768347 | 26.2% | 172 |mpi_barrier_ (sync)
I
| 1.1% | 1.188998 | - -- | 11608 |HEAP

| | === = oo e
[ 1.1% | 1.166707 | 0.142473 | 11.1% | 5235 |free




pat report: Message Stats by Caller

Table 4: MPI Message Stats by Caller

MPI Msg |MPI Msg | MsgSz | 4KB<= |Function
Bytes | Count | <16B | MsgSz | Caller
| | Count | <64KB | PE[mmm]
| | | Count |

15138076.0 | 4099.4 | 411.6 | 3687.8 |Total

|| 8080500.0 | 2062.5 | 93.8 | 1968.8 |calc2_
3 | | | | MAIN_
T e
4|||] 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.O
4|]| 8208000.0 | 2000.0 | -- | 2000.0 |pe.9
4|||] 6160000.0 | 2000.0 | 500.0 | 1500.0 |pe.1l5

|l 6285250.0 | 1656.2 | 125.0 | 1531.2 |calcl_

3 | | | | MAIN

1] | mmmmmmm oo oo
4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.O
4|]| 6156000.0 | 1500.0 | -- | 1500.0 |pe.3

4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.5




Hardware Performance Counters

* All modern CPUs provide have some number of
performance counters used during chip
design/testing

 These counters can be read by the kernel and
tools such as PAPI, CrayPAT, and others to gather
runtime data about an application

* Because the CPUs have a limited number of
counters, it’s often necessary to make multiple

runs to gather all of the performance data of
interest



Types of Data

* Native Events
— Each processor has a large set of events that can be counted

— Names vary between architectures, manufacturers, and
processor families

* PAPI Counters

— PAPI has several counters, which map to native events so that
common metrics, such as FLOP counts can be measured in a
portable way

e Derived Metrics

— Raw counter data is difficult to interpret directly, derived
metrics are rates and ratios that allow easier interpretation of
data

— Example: FLOP Rate, Cache Hit/Miss Ratio, etc.



Gathering HWPC Data

* PAPI

— A portable API, developed at the University of
Tennessee for reading HWPC

— User must explicitly insert API calls to gather and
interpret the data

 Tools

— Most performance tools are able to gather HWPC
data with little to no code modification

— Generally able to display data in an
understandable manner



PAT RT HWPC=1 (Summary with TLB)

PAPI_TLB DM
PAPI_L1 DCA
PAPI_FP_OPS
DC_MISS

User_ Cycles

Data Cache Miss
Virtual Cycles

Data translation lookaside buffer misses
Level 1 data cache accesses
Floating point operations

PAT_RT_HWPC=1

Flat profile data

Hard counts

Time

Imb.Time

Imb.Time%

Calls

PAPI_L1 DCM

PAPI_TLB DM

PAPI_L1 DCA

PAPI_FP_OPS

User time (approx)
Average Time per Call
CrayPat Overhead : Time
HW FP Ops / User time
HW FP Ops / WCT
Computational intensity
MFLOPS (aggregate)

TLB utilization

D1 cache hit,miss ratios
D1 cache utilization (misses)

0.001M/sec
14.820M/sec
0.902M/sec
333.331M/sec
445 .571M/sec
4.434 secs

0.1%
445 .571M/sec
445 .533M/sec

0.17 ops/cycle 1.

1782 .28M/sec

369.60 refs/miss

95.6% hits

22.49 refs/miss

98.3%
4.434402

4500.0
65712197
3998928
1477996162
1975672594
11971868993
0.000985

1975672594
34
0.722

4.4%
2.811

secs

calls
misses
misses
refs
ops
cycles
sec

100.0%Timg

ops 4.1%peak (DP)

ops/ref

avg uses
misses
avg hits

Derived metrics

24



PAT RT HWPC=2 (L1 and L2 Metrics)

USER
Time% 98.3%
Time 4.436808 secs
Imb.Time -—- secs
Imb.Time% -
Calls 0.001M/sec 4500.0 calls

DATA CACHE REFILLS:
L2 MODIFIED L2 OWNED:

L2 EXCLUSIVE L2 _SHARED 9.821M/sec 43567825 fills
DATA CACHE REFILLS FROM SYSTEM:

ALL 24 .743M/sec 109771658 fills
PAPI L1 DCM 14.824M/sec 65765949 misses
PAPI L1 _DCA 332.960M/sec 1477145402 refs
User time (approx) 4.436 secs 11978286133 cycles 100.0%Time
Average Time per Call 0.000986 sec
CrayPat Overhead : Time 0.1%

D1 cache hit,miss ratios 95.5% hits 4.5% misses
D1 cache utilization (misses) 22.46 refs/miss 2.808 avg hits
D1 cache utilization (refills) 9.63 refs/refill 1.204 avg uses
D2 cache hit,miss ratio 28.4% hits 71.6% misses
D1+D2 cache hit,miss ratio 96.8% hits 3.2% misses
D1+4D2 cache utilization 31.38 refs/miss 3.922 avg hits
System to D1 refill 24 .743M/sec 109771658 lines
System to D1 bandwidth 1510.217MB/sec 7025386144 bytes

D2 to D1 bandwidth 599.398MB/sec 2788340816 bytes



PAT RT HWPC=5 (Floating point mix)

USER
Time% 98.4%
Time 4.426552 secs
Imb.Time -—- secs
Imb.Time% --
Calls 0.001M/sec 4500.0 calls

RETIRED MMX AND FP INSTRUCTIONS:
PACKED SSE AND SSE2 454.860M/sec 2013339518 instr

PAPI FML INS 156.443M/sec 692459506 ops

PAPT FAD INS 289.908M/sec 1283213088 ops

PAPI FDV INS 7.418M/sec 32834786 ops

User time (approx) 4.426 secs 11950955381 cycles 100.0%Time
Average Time per Call 0.000984 sec

CrayPat Overhead : Time 0.1%

HW FP Ops / Cycles 0.17 ops/cycle

HW FP Ops / User time 446.351M/sec 1975672594 ops 4 .1%peak (DP)
HW FP Ops / WCT 446.323M/sec

FP Multiply / FP Ops 35.0%

FP Add / FP Ops 65.0%

MFLOPS (aggregate) 1785.40M/sec



PAT RT HWPC=12 (QC Vectorization)

USER
Time$ 98.3%
Time 4.434163 secs
Imb.Time -- secs
Imb.Time% -=
Calls 0.001M/sec 4500.0 calls

RETIRED SSE_OPERATIONS:
SINGLE_ADD SUB OPS:
SINGLE MUL OPS 0 ops

RETIRED SSE_OPERATIONS:

DOUBLE ADD SUB OPS:
DOUBLE MUL OPS 225.224M/sec 998097162 ops

RETIRED SSE_OPERATIONS:

SINGLE_ADD SUB OPS:
SINGLE MUL_OPS:OP_TYPE 0 ops

RETIRED SSE_OPERATIONS:

DOUBLE ADD SUB OPS:
DOUBLE MUL OPS:OP TYPE 445.818M/sec 1975672594 ops

User time (approx) 4.432 secs 11965243964 cycles 99.9%Time

Average Time per Call 0.000985 sec

CrayPat Overhead : Time 0.1

oe




Time% 28.2%
Time 0.600875 secs
Imb.Time 0.069872 secs
Imb.Time% 11.9%
Calls 864.9 /sec 500.0 calls

RETIRED SSE OPERATIONS:

SINGLE ADD SUB OPS:

SINGLE MUL_OPS 0 ops
RETIRED SSE OPERATIONS:

DOUBLE_ADD SUB OPS:

DOUBLE_MUL_ OPS 369.139M/sec 213408500 ops
RETIRED SSE OPERATIONS:

SINGLE ADD SUB OPS:

SINGLE MUL_OPS:OP TYPE 0 ops
RETIRED SSE OPERATIONS:

DOUBLE_ADD SUB OPS:

DOUBLE MUL OPS:0OP TYPE 369.139M/sec 213408500 ops
User time (approx) 0.578 secs 1271875000 cycles 96.2%Time

When compiled with wvectorization:

USER / calc2_

Time$% 24.3%
Time 0.485654 secs
Imb.Time 0.146551 secs
Imb.Time$% 26.4%
Calls 0.001M/sec 500.0 calls

RETIRED SSE OPERATIONS:

SINGLE ADD SUB OPS:

SINGLE MUL OPS 0 ops
RETIRED SSE OPERATIONS:

DOUBLE ADD SUB OPS:

DOUBLE MUL OPS 208.641M/sec 103016531 ops
RETIRED SSE OPERATIONS:

SINGLE ADD SUB OPS:

SINGLE MUL OPS:0P TYPE 0 ops
RETIRED SSE OPERATIONS:

DOUBLE ADD SUB OPS:

DOUBLE MUL OPS:OP TYPE 415.628M/sec 205216531 ops
User time (approx) 0.494 secs 1135625000 cycles 100.0%Time



Derived Metrics: Computational
Intensity

* What: Computational intensity is the ratio of
arithmetic to memory operations

— FLOPS/(Loads + Stores)

* Why: Memory transactions are very expensive in
comparison to FLOPs, low computational

intensity means that the ALUs are waiting for
data

* Interpretation: Higher is better
— Poor: < 0.5 FLOPs/reference

— S0-50: ~1.0 FLOPs/reference
— Good: > 1.0 FLOPs/reference

29



Derived Metrics: Cache Hit Ratios

* What: The ratio of hits to misses for a given cache
level.

— Cache Hits/Cache Misses

* Why: Cache accesses are significantly faster than
memory accesses, ideally once a cache line is loaded it

will be reused.
* |Interpretation: Higher is better
— Poor: < 90%
— S0-50: 90% - 95%
— Good: >95%

— Different levels of cache may have slightly different
thresholds, but these are rough guidelines.

30



Derived Metrics: FLOP Rates

What: Ratio of floating point operations to time.
— Rate: FLOPs/time
— Percentage: (FLOPs/time) / (Peak FLOP/s)

— Caution: Every processor family reports flops differently. Isa 128b,
packed multiply 1 FLOP, 2 64-bit FLOPs, or 4 32-bit FLOPs?

Why: Measures how efficiently the code uses the floating point
units

Interpretation:

— While there is value in measuring % of peak, many people put too
much emphasis in obtaining a very high % of peak.

— In reality time to solution or a domain-specific rate (ie. Simulated
years/day, Particles/second, etc.) is a better metric.

— |If you do measure flop rates, 10-20% is typically quite good.
* Few codes get very high % of peak
* Most codes run happily below 10%

31



Derived Metrics: Vectorization

What: Ratio of vector/packed floating point
operation to scalar/unpacked operations

— This is can be tricky to measure, due to differences in
the way CPUs report FLOPs.

— Example: (FLOPs when compiled with vectorization) /
(FLOPs when compiled without vectorization)

Why: All mainstream CPUs are moving to longer
vectors (SSE -> AVX -> ??)

Interpretation: Higher is better.

32



Other Derived Metrics

* Depending on architecture, other metrics that
may be of interest
— Balance of Adds to Multiplies
— % FMA instructions
— TLB Utilization



